
Based on initial sections of the paper:

Domaszewicz, J.; Lalis, S.; Paczesny, T.; Pruszkowski, A.; Ala-Louko, M.
Graspable and resource-flexible applications for pervasive computing at home
IEEE Communications Magazine, IEEE , vol.51, no.6, pp.160-169, June 2013

Prepared by:

Jaroslaw Domaszewicz

Institute of Telecommunications
Warsaw University of Technology
Warsaw, Poland

Spyros Lalis

IRETETH/CERTH & University of Thessaly
Volos, Greece

GRASPABLE AND RESOURCE-FLEXIBLE
APPLICATIONS FOR PERVASIVE COMPUTING AT HOME

reifying smart home applications…
to make them more like a flashlight

Part I. Ecosystem for resource-flexible
pervasive computing at home

3|

Sensor/Actuator API Our vision of pervasive computing for the domestic environment

assumes an ecosystem formed by an API and three basic

stakeholders (Fig. 1a).

The sensor/actuator API captures relevant resources in the form of

primitives.

4|

Objects and applications
are developed
independently

Object manufacturers produce smart objects, which, in addition

to their regular functionality, expose their sensors and actuators

through appropriate API primitives.

Application developers pick the primitives needed for sensing

and actuation in their smart home applications.

The processes of object and application development

are totally decoupled.

5|

The smart home platform
is formed ad-hoc

The user purchases objects for their regular functionality. At home,

objects jointly form an application execution platform (Fig. 1b).

The platform emerges as a side-effect of populating the home with

objects that are useful for its inhabitants as such,

without consideration for the applications.

6|

Applications are acquired
without thinking about
available objects

In a similar vein, the user acquires applications without knowing

how well the object collection in his home can actually

support them.

Of course, these applications cannot be life critical.

7|

Result: sensor/actuator
resources are unknown
at the development time

The “unplanned” acquisition of objects implies that it is unlikely for

any two homes to feature the same object collection.

It follows that the objects (sensors and actuators) of the target

platform are unknown when the application is developed.

?

8|

Solution:
resource-flexible
applications

If the application is to be of value across a wide range of homes, it

must be resource-flexible, i.e., it should function (instead of

quitting) even if it is lacking some sensors and actuators.

Resource flexibility comes with uncertainty about how well

the application will actually work;

it may be able to deliver its functionality only partially.

If so, the application should inform the user about the functionality

it can deliver in the home where it is deployed.

Part II. The application pill: a graspable application
for resource-flexible computing

10|

Reifying applications
to make them more
like a flashlight

We argue that the best way for the application to “disappear” is

(somewhat paradoxically) to reify it as a regular object that

blends into the domestic environment.

As a yardstick, think how easy it is for anyone to operate a

flashlight: it only has an on/off switch, and it is trivial to check if it

works, just by glancing at it. We wish this to hold for smart home

applications as well.

To this end we propose the concept of the graspable application:

a small physical artifact that embodies a single application

and features an absolutely minimal interface (without any general-

purpose UI elements) for controlling and monitoring its operation.

The point is for the user to conceptually identify the application

itself with a physical object, which can be grasped and manipulated

as easily as the flashlight.

11|

Envisioning
the graspable application
(1/3)

We envision the graspable application as a small object, roughly

the size of a matchbox, as shown in Fig. 2.

The object has a pushbutton to start/stop the application and a diode

to show whether the application is running.

12|

Envisioning
the graspable application
(2/3)

We capture the functionality level of the application as a fraction

of the functionality it would be able to provide if it had

at its disposal all the sensors and actuators it requests

from the underlying object community.

The functionality level can be intuitively displayed via a simple

gauge, like the ones used to show the signal strength of wireless

devices.

13|

Envisioning
the graspable application
(3/3)

The application object may feature one or more knobs, each for

setting a single parameter (e.g., the setpoint for a temperature

control application).

14|

The application pill (1/2) To stress that such a graspable application object should be truly

minimal (in terms of both size and interface), and to hint that it

carries the application’s code, we call it the application pill.

A pill could be accompanied by a one-page manual describing what

the application will do for the user at different values of the

functionality level.

From the user’s perspective, the application pill is the application. It

can be casually placed anywhere in the home (Fig. 3).

15|

The application pill (2/2) Of course, one can imagine several variations of our “canonical”

application pill design (Fig. 4). However, it is important to note that

the application pill should not be transformed into yet another

attention-hungry computer-like device.

If the application has to support complex input/output functions,

these should be delegated to devices with a powerful interface,

likely to be found in the home (say, a TV or smartphone).

16|

For the full story, go to
Domaszewicz, J.; Lalis, S.; Paczesny, T.; Pruszkowski, A.; Ala-Louko, M.

Graspable and resource-flexible applications for pervasive computing at home

IEEE Communications Magazine, vol.51, no.6, pp.160-169, June 2013,

doi:10.1109/MCOM.2013.6525610

Some further items in the paper:

1. a tree-based programming model with resource-

driven, partial tree instantiations,

2. an API for programmer-supported hints that

allow runtime calculations of the functionality

level,

3. HumidifySmart – a case study of a resource-

flexible application with two deployment

examples.

This work was funded in part by the 7th Framework Program of the European Community, project POBICOS,

contract no. FP7-ICT-223984. Thanks to Manos Koutsoubelias, Markus Taumberger, Tomasz Tajmajer,

and Vladimir Palacka.

