Domaszewicz, J.; Lalis, S.; Paczesny, T.; Pruszkowski, A.; Ala-Louko, M.

.Graspable and Resource-flexible Applications for Pervasive Computing at Home”

IEEE Communications Magazine, vol.51, no.6, pp.160-169, June 2013

doi:10.1109/MCOM.2013.6525610, URL: http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6525610&isnumber=6525582

Graspable and Resource-Flexible Applications
for Pervasive Computing at Home

Jaroslaw Domaszewicz 1, Spyros Lalis 2, Tomasz Paczesny 1,
Aleksander Pruszkowski !, Mikko Ala-Louko *

'Warsaw University of Technology, Warsaw, Poland
2 IRETETH/CERTH and University of Thessaly, Volos, Greece
* VTT Technical Research Centre of Finland, Oulu, Finland

ABSTRACT

We envision the home populated with regular objetttat allow
programmatic access to their sensors and actudtesobjects jointly form
a pervasive computing platform, open for third parhdependently
developed applications. A challenge is how to suppeople in deploying
and managing such applications. Today, the useepes an application as
an immaterial artifact, accessed through a scrased interface of a
general-purpose computing device. Contrary to #sfblished paradigm,
we propose to reify the pervasive computing appiboceas a simple physical
thing, called the “application pill.” The pill carasily be grasped and
operated: the user brings the pill home, switches,iand checks if it works
just by glancing at its on/off diode. As the apation is destined for many
homes, each featuring a different collection ofechk§, the user should be
provided with high-level feedback on how well thephcation can work in
her home. Accordingly, the application pill is alsquipped with a simple
“functionality level” indicator. The degree to whicthe application can
deliver its functionality on top of an availablejett collection is captured as
a single number and displayed by the pill. We preseconcrete proof-of-
concept elaboration and implementation of theseasda a pervasive
computing middleware platform targeted at coopegatibjects.

I INTRODUCTION

Regular objects augmented with sensors and actuaterbecoming an ever increasing part of the
home. Significant potential can be unleashed bystaaming a collection of such smart objects inmto a
open platform for applications that can engage gbesing and actuating resources of individual
objects in a combined way. Independent developevsldvthen be able to produce pervasive
computing applications that people can acquire gt me and run on top of the smart object
collection available in their homes.

To realize this vision, one must deal with programgdevel issues stemming from the inherent
distribution and heterogeneity of such a systemwéi@r, especially for the home domain, it is
equally important to consider the user-level issoésapplication deployment and management.
Regarding the latter, the current state of thiregs/és a lot to be desired. To begin with, the user
typically has to go through the motions of instajliapplication software on some computer-like
device, which is already cumbersome and discougdginmost people. Then the application has to be
started, stopped, and monitored via some graphasl interface (GUI) on a computer screen; that is
quite disruptive and annoying in the context ofrgday activities in the home. The big question is
whether a pervasive computing application could takform that “weaves itself into the fabric of
everyday life” [1], instead of being an immatersalftware artifact that can be accessed only with a
general-purpose computing device.

Copyright © IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in
other works must be obtained from the IEEE.

Furthermore, while the application relies on sesmsod actuators to provide its functionality, each
home is populated with different objects, which emkt rather unlikely for the application’s resairc
requirements to be fully satisfied in all cases. @wmable deployment in different homes, the
application should operate in a resource-flexiblaywby allowing graceful degradation of its
functionality and continuing to work even if somexuested sensors and actuators are missing. But
while such resource-flexibility is indeed highlysiible, it also gives rise to other issues: how to
capture the degree to which the application caiveteits functionality in the home where it is
deployed, and how to communicate this informatmthe user.

Our work tackles the above challenges, makingdhewing contributions. First, we introduce the
concept ofreified, graspableapplications. The idea is for the pervasive commguapplication to take
the form of a small physical thing, the “applicatipill,” which is as simple to handle as a flashtig
pick it up, switch it on, and confirm that it worksst by glancing at it. Next, to account for reseu
flexibility, we propose that the user be providedhwhe application’sunctionality level a single
number that captures how well the application igeexed to work on top of objects available in the
user's home. The functionality level is displayed the application pill itself, in the spirit of the
familiar signal strength indicator found on molpleones. Finally, we discuss how the above concepts
have been implemented in POBICOS, a pervasive congpplatform for cooperating home objects.

This article is organized as follows. First, we ayia brief overview of related work. Next, we
present our vision of the home as an open platftamresource-flexible pervasive computing
applications, and introduce the concept of reifigdhspable applications in this context. Then we
describe a proof-of-concept implementation of gaédp resource-flexible applications, and the
model for capturing their functionality level ins&ructured, tree-based way. Finally, we conclude th
article.

. RELATED WORK

Our approach is related to the idea of tangible ierfaces [2], where GUIs on computer screens
are replaced by objects in the real world, thergying physical form to digital information.” Work
in this area has focused mainly on the interadtiemveen the user and the application to achieve mor
natural and efficient forms of input/output, withoavolving a keyboard, mouse, and screen. For
example, in the Urban Planning Workbench [2], teerumanually rotates the hands of a clock to set
the time of day (and, indirectly, the “position” tifie Sun) or moves model buildings, and then
observes the computed shadows “cast” by theseibgddHowever, despite the advances in this field,
the applicationitself is still treated as a typical software artifacte \Wake the concept of tangible
interfaces a step further, by applying the very esarinciple not to input/output, but to the task of
application deployment and management. The apjaitdd reified as a physically distinct, graspable
object (the application pill), which the user caerhlly bring home, start/stop, and see if it isrlwng,
in much the same way as he would do with a flakhlig

Graspable applications are related to informatiopliances and appliance-centric computing [3].
Like traditional appliances, information applian@ s single-function devices with simple dedicated
controls. The most minimalistic MP3 players areeacellent example, also in terms of the form factor
we envision for the application pill. As noted l,[easy-to-use information appliances can be a way
to introduce ubiquitous computing to the home, withburdening the user with unwelcome system
administration chores. The application pill shatesse properties of an information appliance, so it
could be considered as a new genre of the lattez. Main difference is that, unlike an information
appliance, the pill lacks the sensor and actuatsources needed to deliver the application
functionality; the pill is resourceless in thispest and cannot work in a standalone mode. Instkad,
application pill interacts with regular objects fmlin the home and takes advantage of their sensors
and actuators.

To relieve the programmer from having to deal vt unknown (at design time) availability of
resources, a lot of work has been done on enabifiegnd user to produce simple functionality by
herself. For example, in [5, 6], guided by the egstthe user can browse the devices and services in
her home, and form connections between them inrdaestablish the desired data flow or 1/O.
However, this requires quite a lot of involvementtbe part of the user, who becomes responsible for

composing the applications that will run in her lorm contrast, we wish for pervasive computing
applications to be developed by professionals adight into the home as ready-to-use tangible
objects that exploit available sensors and actsateth hardly any configuration. The applications
should be able to provide certain (possibly reduoeue, even if some requested sensors and
actuators are missing, as argued in [7] for whatatlithors call “partial installations.”

In our proof-of-concept realization of the funciadity level, we assume tree-structured
applications and a corresponding recursive formWa. share such a tree-based approach with a
number of works; indicative examples include [8, Blost closely related to our approach is [8],
where the programmer provides code for calculatiegso-called satisfaction metric. Contrary to that
our functionality level is derived by the middlewarbased on programmer-supplied hints
(declarations). It is harder to devise formulasnthégh-level declarations; also, while code is more
expressive, in either case there is inevitable Hiicgtion involved in summarizing a complex
phenomenon with a scalar. Our approach also beans sesemblance to the monitoring of the non-
functional parameters in PCOM [9]. There, when soes®durces are missing, and the component can
no longer fulfill its contractual obligations, & disqualified. In our approach, in the spirit efource
flexibility, there are no such binary decisions. feloimportant, both [8, 9] focus on adaptive
applications, which means that poorly performingiponent subtrees have to be replaced with better
ones, according to what resources are availablethétt sense, the application tree is always
“complete.” The OPPORTUNITY framework [10] follows similar adaptive approach in order to
support flexible context and activity recognitiosing different sensor configurations. While we do
not dismiss adaptation (in fact, our approach migghintegrated with tree-based adaptation), wesfocu
on applications that continue to work and offer eqmeduced) functionality, even if, due to resource
unavailability, the application tree is only paltijanstantiated.

111 ECOSYSTEM FOR RESOURCE-FLEXIBLE PERVASIVE COMPUTING AT HOME

Our vision of pervasive computing for the domestivironment draws from an ecosystem of
three basic stakeholders, each playing a diffemaetin how smart objects and applications enter th
home (Fig. 1a). Serving as an open reference rtime domain, the sensor/actuator application
programming interface (API) captures relevant sensand actuation aspects in the form of
corresponding primitives.Object manufacturers conceive and produce smgecish which, in
addition to their regular functionality, expose itheensors and actuators through appropriate
primitives of this API. On the other hand, applicat developers pick the primitives needed to
implement the sensing and actuation componenth@fapplication. The processes of object and
application development are decoupled: the objemufacturer does not know which applications
will exploit the object’'s sensing and actuationowges, while applications are written without
knowing which objects will provide the required sers and actuators.

used by |Sensor/Actuator| used by
Al

Pl []
L 7 E\pplicariorﬂ Eapplicatiorﬂ o application
¢ .

Object Application
Manufacturer Developer o Sensor/Actuator API

Execution Platform
produces produces

acquired by m acquired by
User
(a) (b)

Figure 1. a) Key stakeholders involved in the idtrotion of smart objects and applications in themieo
b) at home, objects with different sensors andators jointly form a platform for the executionagfplications.

! The design of such an APl is not relevant to trecepts and mechanisms presented in this artindethaus is not elaborated on here.

The user purchases objects for their regular fanatity. At home, objects jointly form a platform
for the execution of pervasive computing appliaagi¢Fig. 1b). The platform emerges aside-effect
of populating the home with objects that are usédulits inhabitants as individual entities, withou
consideration for the applications that might beldged in the home; this corresponds to what the
authors of [4] refer to as an “accidentally forngminestic computing environment.” In a similar vein,
the user acquires pervasive computing applicationthe functionality they are supposed to offer b
without knowing how well the object collection imsthome can actually support these applications.
Of course, these applications cannot be life alitics there is no guarantee that they will workhtgr
full extent (or at all). One should rather thinkthEm as a bonus to be enjoyed on top of the regula
functionalities of the home objects.

For the programmer, this “unplanned” acquisition aifjects and applications amounts to a
challenge, as is it is unlikely for any two homeddature the same object collection. This pralijica
means that the objects (sensors and actuatorisg ddtget platform are unknown at the time when the
application is written. Therefore, if the applicatiis to be of value across a wide range of hotihes,
must be designed to work in a resource-flexible .way this article, byresource flexibilitywe
understand that the application should have thityabd function (instead of quitting) even if isi
lacking some sensors and actuators.

However, resource flexibility comes with uncertgiabout how well the application will actually
work in a home. In fact, it could be that some sagkthe application cannot be performed at akknev
if the applications adapt to different sensor aothi@or configurations. As a result, the applicatio
may be able to deliver its functionality only palty. If so, the application should inform the user
about the functionality itan deliver, based on the sensors and actuators foutheg home where it is
deployed. This is crucial for setting the right egtions, and for allowing the user to identifydan
dismiss applications that cannot function well egtau

Iv. REIFYING RESOURCE-FLEXIBLE APPLICATIONS

The deployment and management of pervasive compuatiplications in the home should be
intuitive and relatively effortless for the user.eWet ourselves be inspired from the way people
interact with simple everyday things. We also take account the functionality feedback that needs
to be provided by resource-flexible applications.

THE CONCEPT OF A GRASPABLE APPLICATION

The prevalent approach is to treat pervasive comgupplications as conventional programs:
immaterial artifacts that have to be downloadedtalted, started/stopped, and inspected using a
computer-like device. This view corresponds to whatauthor of [2] refers to as “bits” in cyberspac
which are exposed to and manipulated by the useagh a GUI that “tied down as it is to the screen,
windows, mouse and keyboard, is utterly divorcednfthe way interaction takes place in the physical
world.” Contrary to this approach, to use again ittetaphors of [2], we believe it is convenient for
applications to be “atoms” in the real world sotttieey can be handled using naturally developed
skills and practices for manipulating physical abge

In the spirit of ubiquitous computing [1], we adabe that the best way for the application to
“disappear” is (somewhat paradoxically) to reifyag a regular object that blends into the domestic
environment. People should perceive and use aiplicaas they do other simple things in the home,
relieved from the alien and complex world of congrigystems. As a yardstick, think how easy it is
for anyone to operate a flashlight: it only hasoaroff switch, and it is trivial to check if it wks, just
by glancing at it. We wish this to hold for perwastcomputing applications as well.

To achieve this goal, we propose the concept ofithspable application: a small physical artifact
that embodies gingle application and features an absolutely minimagriaice (one that does not
employ any general-purpose user interface eleméartgpntrolling and monitoring its operation. The
point is for the user to conceptually identify tggplication itself with a physical object, whichnche
grasped and manipulated as easily as the flashlight

THE APPLICATION PILL: A GRASPABLE APPLICATION FOR RESOURCE-FLEXIBLE COMPUTING

This subsection presents our “canonical” desiga gfaspable application object, in the context of
the ecosystem described earlier. To guide the desig propose the following requirements:
= (R1) The application object should provide a mdanshe user to turn the application on/off and
to see whether the application is turned on.

* (R2) The application object should offer feedbaaoktlee functionality that the resource-flexible
application can deliver on top of the objects (semsand actuators) available in a home. The
feedback should be high-level, consciously sa@ndiqrecision for simplicity; this is acceptable,
given that the applications we have in mind are-critical.

= (R3) Optionally, the object can offer “tangible”rdools for setting application parameters.

» (R4) Finally, it should carry the application’s @dnd possibly provide a runtime for executing
the code (this requirement has no impact on theinssface design of the application object).

Based on these requirements, we envision the drkespaplication as a small object, roughly the
size of a matchbox, with a simple user interfasestaown in Fig. 2. Concerning (R1), the objectdas
pushbutton to start/stop the application and aaliodshow whether the application is running. As to
(R2), our approach is to capture the functionadligt can actually be provided by the applicatiom as
fraction of the functionality it would be able to provideit had at its disposal all the sensors and
actuators it requests from the underlying objechmmminity; we refer to this as thHenctionality level
of the application. The functionality level is aakar, which can be intuitively displayed via a sienp
gauge, like the ones used to show the signal streofwireless devices. Such an indication is
meaningful irrespective of the actual functionabfythe application in question: if the applicaticemn
operate at a mere 10 percent of its potentiad, robably not worth running in one’s home, wheitas
it can deliver 75 percent of its intended functidggait will most likely be useful. Finally, as t(R3),
the application object may feature one or more Bn@ach for setting a single parameter (e.g., the
setpoint for a temperature control application).viobsly, due to limited real estate, application
designers should introduce as few such parameigressible.

How well can the application work
on top of this object community?

Functionality
level indicator

| | ‘\;E:J (

Is the application on/off? —

(a) (b)

Figure 2. The “canonical” application pill desigrobjects are not shown to scale): a) the applicapdhobject,
featuring a minimal interface to control and monitihe resource-flexible application; b) the applica is
started/stopped by pressing/depressing the buttendiode shows the on/off status of the applicatioe knobs
are used to set application parameters; the lineadicator shows the functionality level of the @pation.

To stress that such a graspable application objemtld be truly minimal (in terms of both size
and interface), and to hint that it carries theliappon’s code, we call it thapplication pill
Application pills could be marketed in numerous wajor example, sold in stores with home
appliances and furniture, or bundled with home imepment magazines. A pill could be accompanied
by a one-page manual describing what the applicatitl do for the user at different values of the
functionality level.

From the user’s perspective, the applicationipithe application. The pill can be casually placed
anywhere in the home (Fig. 3). The on/off statud &mctionality level of the application can be

observed at a glance, and the application parasetar be set by turning the knobs, both without
having to resort to a computer screen or anothégeta If the user decides (perhaps after consulting
the pil’'s manual) that the functionality level iso low to be of value to her, she can turn the
application off by depressing the button of thé pil

q 3 1
o} o[o
Saver

Figure 3. Application pills can be put at variousnwenient places in the home (objects are not stiownale).

Of course, one can imagine several variations of “oanonical” application pill design. For
instance, the pill could inform the user about gemin the functionality level in some attention-
grabbing way (e.g., via sound or vibration). Altatimely, the pill could be designed as an appluwati
dedicated ambient display [11]; one option is fue tolor of the entire pill to change to reflect th
application’s functionality level. A concrete exdmplong these lines is provided in the next sectio
where we discuss our proof-of-concept implementatio

It is important to note that the application phiosild not be transformed into yet another attention
hungry computer-like device. If the application hassupport complex input/output functions, these
should be delegated to other devices with a powenrterface that are likely to be found in the home
such as TVs, computers, and smart phones. Mordsdab®mut how we envision the configuration and
input/output of pervasive computing applicationsbt performed via regular objects can be found
in [12].

V. PROOF-OF-CONCEPT: THE POBICOS PLATFORM

In this section, we describe how the concept ofpmphle and resource-flexible applications is
implemented in the FP7 project POBICOS. POBICO®arhed system support for opportunistic
monitoring and control applications on top of anhedt community of cooperating home objects. It
delivered a complete platform along the lines af ¢tbomputing ecosystem described earlier, including
a programming model, a middleware prototype, andapplication/object development toolchain.
POBICOS was demonstrated with a demand-responsgyesa@ving application developed by SAE-
Automation (Slovakia), and showcased at Accentueehfology Labs (France) and the Center of
Renewable Energy Resources (Greece).

POBICOS applications consist of lightweight mobdemponents, which are written in C and
compiled into a binary for the POBICOS virtual miaeh(VM) [13]. The middleware provides the
VM-based runtime environment and implements theedgohg mechanisms for secure object
community formation [14], as well as component camioation and mobility [15]. The POBICOS
middleware runs on Imote2 nodes from Menisihe implementation on top of TinyOS 2.1 takes 289
kbytes of code memory and 225 kbytes of RAM (withauoy optimization). Wireless communication
between nodes is achieved through a Z430-RF248Begignodem from Ti,attached to the Imote2
via an external board. Simple objects, like motiletectors, lamps, and an alarm, are connectedto th
Imote2 via the GPIO interface. More complex objestsch as a TV set-top box, a fan, and an air
conditioner, are controlled via custom-made RS28spsers and power plugs.

http://www.memsic.com/support/documentation/wireleensor-networks/category/7-datasheets. html?dagn89%3Aimote2-
multimedia
®http://focus.ti.com/docs/toolsw/folders/print/ez432480.html

THE POBICOS APPLICATION PILL PROTOTYPE

The POBICOS application pill is a spherical objesfth a pushbutton on the side and a
monochrome diode on the top (Fig. 4a). Internalhg pill contains an Imote2 node (Fig. 4b) that
stores the application binary and hosts the POBI@W&lleware on top of which the application
executes.

(a) (b)

Figure 4. The POBICOS application pill: a) the useéew: a pushbutton for starting/stopping the apation,
and a diode that shows the on/off status as wethagunctionality level of the application; b) thrgernal view:
the Imote2 (with the application binary and the ROBS middleware) wired to the pill's button and dio

The POBICOS pill is a variation of the “canonicdBsign presented earlier. The pushbutton plays
the same role: the application is started and swppy pressing and depressing it, respectively.
However, the diode serves a dual purpose: to itelibath the application’s on/off status and its
functionality level (there is no linear indicatarfthis): if the application is off, the diode iff to; if
the application is on, the diode blinks slowly whe functionality level is high, and faster as the
functionality level drops (to catch the user’s atiten); if the application encounters a fatal peshlor
crashes, the diode remains constantly on. To Keegnplementation simple, the pill does not have
any parameter knobs; instead, POBICOS applicatisagdefault values for their parameters.

RESOURCE-FLEXIBLE APPLICATIONS IN POBICOS

POBICOS applications are structured as a set gie@abing components, called agents. Following
the approach of hierarchical control systems [&4§Ents are organized in a tree. The edges ofdbe tr
represent parent-child relationships as well asctiremunication channels for exchanging messages.
Leaf agents interact with the physical environmentacquiring information or effecting change via
the sensors and actuators of smart objects; thpmetsaare referred to a®n-genericbecause they
rely on specific sensing and actuating primitivdsclr are supported only by the objects that feature
the corresponding sensors and actuators. Non-lgahta implement higher-level aggregation,
processing, and control tasks, using general-perposnitives supported by all objects; these agents
are calledyeneric

At runtime, the development of the tree is guidgdhe application logic. It starts with the root
agent, which uses the agent creation middlewareitpre to create its children. Those, in turn, ¢eea
their own children, and so on. The process continurgil leaf agents are created. Applications aan b
programmed to change the agent tree at any timaglexecution. Here, though, we focus on the
simpler case where the desired functionality campgemented using a fixed tree structure.

Each agent runs on a specific object; the agenbjeet mapping is maintained by the
middleware. For a generic agent, a creation regesstits in one new agent instance, placed on an

object irrelevant to the programmer. The non-genagent uses programmer-selected sensing and
actuating primitives, and thus can run only on nigitg objects: those that support these primitives
(have suitable sensors and actuators). Non-geageiot creation requests can be made in two modes:
single or multiple. The single mode results in omsv instance, placed on a single matching object
that is picked by the middleware. The multiple moésults in an instance placed everymatching
object. If there are no matching objects, no instais created, and the application tree does not
develop into the complete tree envisioned by thegm@ammer. Notably, the POBICOS middleware
allows the sharing of sensors, but imposes a pribased mutual exclusion policy on actuators. As a
conseguence, the creation of a non-generic actyatient may also fail because all matching objects
are already occupied by other actuating agents.

To give an example, Fig. 5 shows the tree of khnidifySmartapplication, which prevents
wasteful operation of point-of-use humidifiers (fame one-room units). For each room in the house,
the root agent (ROOT) creates a generic room hiynidanager agent (MGR). In turn, each MGR
creates for its room a human presence agent (HPRIndow sensing agent (WIN), and a humidifier
control agent (HUM). The HPR agent creates humdinigcagents (ACTs). WIN, HUM, and ACT
are non-generic. Matching objects for WIN and HUM a window with an open/close sensor and a
humidifier that can be controlled programmaticaligspectively. A matching object for ACT is any
one that can detect a human-generated event ¢pgning a refrigerator door, flushing a toilet, or
switching a lamp on). WIN and HUM are created ia #ingle mode (the application assumes up to
one window and one humidifier per room), while A@Tcreated in the multiple mode (to detect as
many human-generated events as possible).

O Generic agents
< Non-generic agents

User-specificied - —
humidity setpoint - Agent functionalities
ROOT Propagates the humidity setpoint

MGR Manages per room humidification

[ne,im]

HPR Infers user presence in a room
ACT Detects user activity events
WIN Detects window open/close status

HUM Controls the humidifier

Agent happiness hints

Essentiality Importance

Non-essential ne | Low il

Essential e | Medium im
High ih
p e ———
multiple single single

Figure 5. The agent tree of the HumidifySmart aggtion. The direction of the edges reflects thevflof
information between agents. The programmer-supiagabiness hints for the children of each agentsirewn
in brackets.

HumidifySmart works as follows. The HPR agent isferser presence/absence in its room,
depending on whether human-generated events avgeadpy the ACT agents. Based on the presence
information from HPR and the status of the windaparted by WIN, the MGR agent produces a
command for the humidifier. If nobody is in the no@r the window is open, the command is to
deactivate the humidifier to avoid wasteful openatiOtherwise, the command contains the humidity
setpoint, which MGR agents receive from ROOT whenuser changes it via a parameter knob on the
Humidify Smart application pill. Finally, HUM accepthe command from MGR and controls the
humidistat accordingly.

As noted earlier, the agent tree may not develtip. flihe root cause for a partial instantiation of
the application tree is a lack of objects with sessnd actuators needed by some non-generic agents
More specifically:

= |f, for a given non-generic agent, there are nochiag objects, no instance will be created, no
matter what the creation mode.

= If there are few matching objects, the number efances created in the multiple mode may be
significantly less than expected by the programmer.

= Furthermore, if some non-generic agents are missivr (generic) parent may not be able to
deliver any value, and should quit (in which cabke, entire subtree disappears as well). This, in
turn, may render the parent of that generic agselegs as well, and so on.

In fact, given that the target collection of obged unknown at application development time, a
lack of some sensor and actuator resources andatpastial instantiation of the application tree ar
more likely than not.

The key feature of a resource-flexible applicatisrthat it continues to run and deliver useful
functionality, even if some required sensor anduactr resources are missing, and the tree is
instantiated only partially. For example, Humidifg&rt can be programmed to work in a resource-
flexible way, as follows. The quality of inferenceSthe human presence agent, HPR, is high when
there are many ACT agents: the more objects cattdbuman activity, the better. However, even if
there are very few ACTSs, or just a single one, HR& still provide some (less accurate) presence
information. Only if there are no ACT agents atsilbuld HPR quit. Now consider the room manager,
MGR. It can deliver value even if there is no HRRo WIN agent. If HPR quits but WIN exists, and
it is known when the window is open, humidificatioh outside air is avoided (although an empty
room may be unnecessarily humidified). If ther@masWIN, but HPR works, humidification is made
human-presence-sensitive (although one may walstdiumidify outside air). Even without either
HPR or WIN, the MGR agent can deliver some value(CH can use such MGRs to forward the user-
specified humidity setpoint to all the humidifidrsthe home. Only if there is no humidifier in the
room (and hence no HUM) is the MGR agent unabléa@nything useful and should quit. Finally,
ROOT can deliver value (to the user) as long dsaat one MGR agent exists.

AGENT HAPPINESS: CAPTURING THE FUNCTIONALITY LEVEL OF RESOURCE-FLEXIBLE APPLICATIONS

Clearly, the availability of sensor and actuat@orgces needed by the application determines the
instantiation of the application tree, and thuget the functionality that can be provided to ¢he
user. Now, imagine that one could capture, witingle number, the degree to which the application’s
sensor and actuator requirements are satisfiedgivem home. Such a resource satisfaction degree
could then be interpreted as an indicator of tletionality that can be expected of the application
that home. To make this interpretation legitimatedividual resources should contribute to the
resource satisfaction degree according to how rthiehcontribute to the functionality.

To work out the above idea, we introduce a modskbtaonneedsand happinesqwe use some
psychological analogies). Both are defined for genagents only. The happiness level of a generic
agentA, h(A), captures the availability of underlying sensangl actuators, but is interpreted as an
indication of how wellA is able to serve its “customer,” that is, the pasgent or the end user ffis
the root); the agent is happy if it can performlwatcordingly, the functionality level displayeado
the application pill is equal to the happinessha toot agenth(ROOT) Needs, in turn, refer to the
agent’s children — to perform well, the agent neigichildren to be available and perform well
themselves. The model ties an agent’s happindssrneeds. The happiness model is as follows:

= The agent has a collection of needs, each of wtéchbe satisfied to a degree, from not being
satisfied at all to being satisfied perfectly.

» Each need has a level infiportance(low, medium, or high), which reflects how muclmeed, if
satisfied, positively contributes to the agent'ppiaess.

= Each need is eithessentialor non-essential; while importance is about pesitontribution to
the level of happiness, being essential states@egquisite, which, if missing, renders the agent
unhappy (the agent cannot be happy if any of gemttal needs is satisfied to a low degree).

= The agent’'s happiness level is obtained, usingappmess formula,” from the degrees to which
individual needs are satisfied, as well as frongmomer-supplied declarations, calleppiness
hints, on the importance and essentiality of those needs

Both happiness levels and degrees of need satsfaake on values in [0,1] with O denoting total
unhappiness and the complete lack of need satsfiagind 1 denoting perfect happiness and perfect
need satisfaction. Lé® be a child of a generic ageft If B is generic, the degreds to which the
respective need &k is satisfied equals (recursively) the happinesB,af; = h(B). If B could not do
anything useful and no longer exists (has qdi)= 0. Now assume thd is non-generic, that is, it
requires a matching object (one with the specifiesers or actuators) to exist.Bfis created in the
single mode, the need is either perfectly satisfidgl = 1) or completely unsatisfieddd = 0),
depending on whether the instanceéBdias been created. For the multiple mode, the saisfaction
is an increasing function of the numiteof instances created (the more, the better). kamele, one

can capture this relationship with, (k) =1-27/%v2 ' whereds = 0 if no instance is createk £ 0),

ds = 0.5 fork = Ky, anddg approaches 1 &sincreases further.

Next we cover the so-called additive version of tlagpiness formula (the full formula is more
elaborate). Assume a generic agartasN needsM of which are essential. Let, d,, ... , dy be the
degrees to which these needs are satighigqy, ..., pv be values representing the importance of the
needs (say, 1 for low, 2 for medium, and 3 for higmdi,, i», ..., iy be the indices of the essential
needs. Then the happiness leveha$ given by

h(a) = m.n[w,d,. sld,). s (diz),...,s(dw)j

Above,w, = p,/ (p1 + p2 + ... +pn) is the importance weight of tmgh need, andS:[0]1] - [0]] is

an essentiality modeling functipavhich returns a small value if an essential neegoorly satisfied
(to drive the happiness level low); otherwiseyatue should not affect the happiness level. Ctigren

we let§(x) =X if X< X0 fOr somexpoor, and(x) = 1 otherwise.

A couple of notes about this model are in orderstFithe happiness level of any agent is
ultimately driven by the existence of non-genemeras (for the multiple mode, by the number of
created instances). These exist if and only ifére@e matching objects, that is, objects which stpp
the sensing and actuating primitives used by thentag(via suitable sensors and actuators). Thus,
happiness levels indeed capture sensor and actestmuirce availability. Second, the above formulas
take into account the partial instantiation of ipplication tree, as described earlier: a possiule of
a non-generic agent, a low number of non-genemnisgresulting from the multiple mode, and the
fact that a generic agent will quit if unable tdider any value. Third, happiness hints represhat t
programmer’s judgment as to how resource avaitglafifects (directly or indirectly) the functionifi
delivered by agents and the application as a whdies is why it is justified to interpret happiness
levels in terms of functionality. Finally, the piision of happiness hints (with a dedicated middiewa
primitive) is the only overhead imposed on the paogmer. Otherwise, the happiness scheme is
transparently implemented by the middleware.

DEPLOYMENT CASE STUDY: HUMIDIFYSMART

Consider again the HumidifySmart application. Tlg@giness hints supplied by the programmer
appear next to the edges of the application trég.). As to essentiality, MGR cannot affect
humidification without a humidifier, so HUM is esdml. Actually, this is the only essential need in
HumidifySmart. For example, as explained earlieGRIcan provide some functionality even without
WIN (window sensing) or HPR (human presence sehsswthese agents are non-essential. In fact,
having non-essential needs ipr@requisitefor resource-flexibility. As to importance, WIN fgghly
important to MGR, whereas HPR is of medium impaoz&arThis reflects the programmer’s judgment
that avoidance of humidification while the windog/ dpen constitutes the key functionality of the
application, more so than the presence-sensitieeatipn. Interestingly, while HUM is essentialisit
of low importance. The reason is that the appliecais not about humidification as such, but about

10

making humidification smarter (the functionalityhéevable with humidifiers alone is very modest).
This illustrates the fact that essentiality andam@nce are “orthogonal.”

Based on the programmer’s hints and the happimessufa, it is straightforward to calculate the
happiness levels of the application’s agents for @ncrete case of sensor/actuator availability. Fo
example, Fig. 6 shows two homes with respectivéaimimtions of the HumidifySmart application
tree. To make the tree instantiations easier foviglall generic agents are shown to exist, even th
totally unhappy ones, i.e., those that are unabjgdvide any value (in reality, such agents wayd
and cease to exist, and their children would disapms well). Of course, this does not affect the
happiness values of their parents since havingadiytanhappy child is equivalent to not havingttha
child at all.

@3/ h(ROOT) = 0.08 @3/ h(ROOT) = 0.55
e — = —— —

(a) (b)

Figure 6. Deployment of HumidifySmart in two difier homes (smart objects are colored). Non-gersgents
ACT, WIN, and HUM are depicted next to the matclibgcts on which they were created. The ACT agasts
placed on objects that can detect any human-geeéravent. Generic agents are shown as locationdestheir
placement is irrelevant. The pill's indicator shotire functionality level of the application (thepméness level
of the ROOT agent).

To calculate happiness, one first needs to obsiéraed how many non-generic agents exist.
Table 1 provides a summary for each home. For ricstathe bedroom in Fig. 6a has a sensor-
equipped window (hence the instances of WIN and AGTt not a humidifier (thus no HUM). On the
other hand, the living room in Fig. 6b has a hufredi(the HUM agent), a sensor-equipped window
(the WIN and ACT agents), and five more objectediitig human activity (the other five instances of
ACT).

Table 1. Agent happiness for two indicative deplewts of the HumidifySmart application.

Existing non-generic agents Happiness of generic agents
Home Room HUM WIN No.of ACTs | h(HPR) h(MGR) | h(ROOT)
a) Bedroom No Yes 1 0.13 0.00 0.08
Living room Yes No 0 0.00 0.17
b) Bedroom Yes No 2 0.24 0.25 0.55
Living room Yes Yes 6 0.56 0.85

11

Table 1 also lists the corresponding happinesddefeall generic agents: HPR, MGR, and ROOT
(to carry out these calculations, we Kaf, = 5; the value ok is irrelevant in this case). Note that
the MGR agent in the bedroom of Fig. 6a is totatiphappy due to the lack of a humidifier (no HUM),
even though WIN and ACT do exist. This is becausdvHs essential for MGR. The MGR agent in
the living room of Fig. 6a is somewhat happy (0.ib73pite of the fact that there are no WIN and no
ACT agents; the (admittedly small) added value ISR can still deliver is that the humidifier will
operate according to the setpoint specified by uber for the entire home. Also, the four cases
included in the table show how the happiness dflBR agent increases with the number of its ACT
agents. Finally, the happiness of ROOT is the noddhat of the room managers (MGRs) because all
have the same (medium) importance and thus equghtvim the happiness formula. As shown in
Fig. 6, the happiness of ROOT is displayed by fh@ieation pill as the functionality level.

VI. CONCLUSION

We propose the concept of the reified, graspabfdicgtion, which can be acquired, placed,
controlled, and monitored just like a simple evenydhing. By doing so, we extend the concept of
tangible interfaces to the application as such.us&the common flashlight as our reference pomnt fo
simplicity in the design of graspable applicatio@ven that such applications have to be resource-
flexible, we place special emphasis on offeringhHigvel feedback on the functionality that can be
delivered based on the available sensors and actyuab the user can assess, at a glance, hovheell
application can work in her home.

It is important to note that the POBICOS proof ofcept is just an exemplification of the key
idea of graspable and resource-flexible applicatiohn alternative approach is illustrated by our
canonical pill design. Also, it is certainly podsilio capture the application functionality levela
different way, as well as to extend the concepiai-tree-structured applications.

Even with our simple application pill prototypewts very easy to deploy, start/stop, and monitor
the functionality level of the demo applicationattiwere developed in the course of POBICOS.
Comprehensive experimentation with real users wagid the scope of the project, but is an
important direction for future work.

Finally, one should stress that, in general, thecept of the reified, graspable application is not
inherently tied to resource flexibility (and theopisioning of the functionality level). Bundling éh
two makes good sense for our pervasive computingystem. However, for different environments
one could consider graspable applications thahateesource-flexible, as well as resource-flexible
applications that are operated in a traditional wa&g@ a general-purpose, computer-like device.
Another direction for future work is to explore feifent uses of the above two concepts, taken
separately.

ACKNOWLEDGMENT

This work was funded in part by the 7th FramewardgPam of the European Community, project
POBICOS, contract no. FP7-ICT-223984. We would like thank Manos Koutsoubelias for
implementing the agent happiness scheme in the O8Imiddleware. We would also like to thank
Markus Taumberger and Tomasz Tajmajer for contidbstto the application pill design.

REFERENCES

[1] M. Weiser, “The Computer for the 21st Centur$¢i. Amer, Sept. 1991, pp. 94-104.

[2] H. Ishii, “Tangible Bits: Beyond PixelsProc. 2nd Int'l. Conf. Tangible and Embedded Intera
tion, invited paper, 2008, pp. XV—XXV.

[3] D. A. Norman, “The Invisible Computer: Why Good Buats Can Fail, the Personal Computer Is
so Complex, and Information Appliances Are the 8oy’ 1998,MIT Press,ISBN0-262-64041-4.

12

[4] W. K. Edwards and R. E. Grinter, “At Home with Ubitpus Computing: Seven Challenges,”
Proc. 3rd Int’l. Conf. Ubiquitous Computing001, pp. 256—72.

[5] J. Humbleet al, “Playing with the Bits: User-Configuration of Whiitous Domestic Environ-
ments,”Proc. 5th Int’l. Conf. Ubiquitous Computing003, pp. 256-63.

[6] P. Wisner and D. Kalofonos, “A Framework for Ended®rogramming of Smart Homes Using
Mobile Devices,Proc. 4th IEEE Consumer Commun. and Networking Caa07, pp. 716-21.

[7] C. Beckmann, S. Consolvo, and A. LaMarca, “SomesAssdy Required: Supporting End-User
Sensor Installation in Domestic Ubiquitous Compgitinvironments,Proc. 6th Int'l. Conf.
Ubiquitous Computing2004, pp. 107-24.

[8] J. M. Paluskat al, “Structured Decomposition of Adaptive ApplicatsgyhProc. 6th Annual
IEEE Conf. Pervasive Computing and Commga08, pp. 1-10.

[9] C. Beckeret al, “PCOM — A Component System for Pervasive CommytiRroc. 2nd Annual
IEEE Conf. Pervasive Computing and Comm@ga04, pp. 67-76.

[10]M. Kurz et al, “The OPPORTUNITY Framework and Data Processingskstem for Opportun-
istic Activity and Context Recognition|it’l. J. Sensors, Wireless Commun.and Contgglecial
Issue on Autonomic and Opportunistic Commun., ¥pho. 2, 2011, pp. 102-25.

[11]Z. Pousman and J. Stasko, “A Taxonomy of Ambiefdrmation Systems: Four Patterns of De-
sign,” Proc. ACM Working Conf. Advanced Visual Interfa@6, pp. 67-74.

[12]S. Laliset al, “Tangible Applications for Regular Objects: Andeblser Model for Pervasive
Computing at Home,Proc. 4th Int’l. Conf. Mobile Ubiquitous Computingystems, Services and
Technologies2010, pp. 385-90.

[13]A. Pruszkowski, T. Paczesny, and J. DomaszewiapiFC to VM-targeted Executables: Tech-
nigues for Heterogeneous Sensor/Actuator Netwofk®it. 8th IEEE Wksp. Intelligent Solutions
in Embedded Systen#010, pp. 61-66.

[14]P. Tarvaineret al, “Towards a Lightweight Security Solution for Udeniendly Management of
Distributed Sensor NetworksProc. 2nd Conf. Smart Spac@909, pp. 97-109.

[15]N. Tziritaset al, “Middleware Mechanisms for Agent Mobility in Wiess Sensor and Actuator
Networks,”Proc. 3rd Int'l. Conf. Sensor Systems and Softw2042, pp. 30—44.

[16]M. D. Mesarovic, “Multilevel Systems and Conceptdirocess ControlProc. IEEE vol. 58, no.
1, 1970, pp. 111-25.

BIOGRAPHIES

JAROSLAW DOMASZEWICZ (domaszew@tele.pw.edu.pl) is assistant professor at the
Institute of Telecommunications, Faculty of Eleaios and Information Technology, Warsaw
University of Technology (WUT), Poland. His resdarimterests include pervasive and mobile
computing, middleware, programming models, and ueso modeling. He is also experienced in
embedded systems and real-time multiprocessorsed¢¢gved his Ph.D. from Texas A&M University.

SPYROS LALIS (lalis@inf.uth.gr) is an associatefpssor at the Computer and Communication
Engineering Department, University of Thessaly, &8s and a research associate at the Institute for
Research & Technology Thessaly of the Centre faeRech and Technology Hellas. His research
interests span programming environments, operairsggems, distributed systems, and ubiquitous
computing. He received his Ph.D. in computer s@dnam ETH Zurich.

TOMASZ PACZESNY (t.paczesny@funandmobile.com) reedihis M.S. from WUT in 2008.
Until 2012, he was a research assistant at th#utesbf Telecommunications of WUT. Currently, he
is a software architect at a mobile software dgymient company, FUN and MOBILE Sp. z 0.0. His
research interest is mainly in mobile, context-ayand ubiquitous systems and services.

ALEKSANDER PRUSZKOWSKI (apruszko@tele.pw.edu.plpisnember of technical staff at the
Institute of Telecommunications, WUT. His expertiseas are embedded systems, virtual machines
for small platforms, intelligent home, and ubiqusacomputing. He received his M.S. from WUT.

MIKKO ALA-LOUKO (mikko.ala-louko@vtt.fi) received I8 M.Sc. degree in electrical
engineering from the University of Oulu, Finland,2010. He is currently working at VTT Technical
Research Centre of Finland as a research scieHistmain research interests include distributed
systems, wireless sensor networks, and securiigsolurce-constrained systems.

13

